

This exemplar report was submitted by a student and is not reflective of the official
views of the University of Auckland. The content and opinions expressed are solely

those of the author.

Practical Work at Bermondsey Electronics Ltd.

Page 1 of 20

Practical Work Report

Software Engineering

Department of Electrical, Computer, and Software Engineering

Bermondsey Electronics Ltd.

United Kingdom

Dates of the Work Period

13th of November 2023 – 2nd of February 2024

Date of Report

19th of February 2024

Practical Work at Bermondsey Electronics Ltd.

Page 2 of 20

Summary
Bermondsey Electronics Ltd. is a small, embedded software consulting company based in
London, United Kingdom. Specialising in various sectors, including aerospace,
automotive, and fitness, the company brings in customers from all over London, the
United Kingdom, and the world. The company's primary focus is the design and
verification of electronic systems (including software). Automated testing, predominantly
through their in-house product BELIeVE, is a crucial factor in customer satisfaction.

I worked with and throughout my internship and completed
six projects. From working with serial communication devices with RS232 and I2C to
wireless communication devices with Bluetooth Low Energy, I developed a solid
understanding of embedded software communication.

Apart from the software skills I gained, I also deepened my knowledge of both the
processes involved in running a company and working with customers directly.
Completing QMS activities was a significant element of team meetings. As it was the
beginning of 2024 while I was there, the company also conducted its annual Year-In-
Review. Critical processes have stemmed from these activities. For example, I was tasked
with creating an Integration Test Plan at one point during the internship. The requirement
to complete this document for new customers directly resulted from the Year-In-Review
activities from previous years.

Living in London and working at Bermondsey Electronics for two and a half months was
an incredible experience. I am immensely grateful to everyone who helped me realise this
opportunity.

Practical Work at Bermondsey Electronics Ltd.

Page 3 of 20

Acknowledgements
Bermondsey Electronics is a small, embedded firmware and software product specialist
company run by was my manager.

I would like to thank for his trust in me. sat directly opposite me in
the office and was always willing to answer my questions – in great depth. He has taken
on a number of interns over the years, allowing him to refine his stance on interns.
believes interns should do real work. That’s precisely what I got to do.

I would also like to extend my gratitude to , who led me through my
internship journey at Bermondsey Electronics. Always only a Microsoft Teams message
away, gave me the courage to learn a great deal throughout my internship. Whenever
I found myself unable to progress, we would meet over Microsoft Teams, and he would
give me hints so I could continue. Since I was working on real company projects, often
did not know the solution. He opened paths I could take to try and solve the problem
myself, and I found this extremely valuable.

Near the end of my internship, was hired. I would like to acknowledge
 for her friendliness and openness to working together. We ended up teaming up

for my final project at Bermondsey Electronics and she generously offered me technical
advice while I helped explain the company processes to her.

The internship at Bermondsey Electronics was such an amazing experience, and that
would not have been the case without these amazing people. I can’t thank , and

 enough.

Practical Work at Bermondsey Electronics Ltd.

Page 4 of 20

Table of Contents
SUMMARY .. 2
ACKNOWLEDGEMENTS... 3
TABLE OF CONTENTS .. 4
TABLE OF FIGURES ... 4
1 INTRODUCTION ... 5
2 COMPANY INFORMATION ... 6

2.1 OFFICE LAYOUT .. 6
2.2 STAFF ORGANISATION STRUCTURE .. 6
2.3 TECHNICAL FACILITIES AND AMENITIES ... 6

3 WORK EXPERIENCE .. 8
3.1 LUTRON UVC LIGHT METER .. 8
3.2 AMS UV SENSOR .. 11
3.3 BLE OUTPUT BANDWIDTH .. 12
3.4 DEVICE INFORMATION SERVICE DLL ... 14
3.5 128-BIT UUIDS IN BELIEVE ... 14
3.6 RFID STICK SCANNER FOR FARM ANIMALS .. 17

4 REFLECTIVE APPRAISAL .. 18
4.1 IMPRESSIONS OF BERMONDSEY ELECTRONICS LTD. ... 18
4.2 MY GROWTH AS A SOFTWARE ENGINEER... 18

5 CONCLUSIONS .. 20

Table of Figures
FIGURE 1: BERMONDSEY ELECTRONICS LTD. LOGO. ... 5
FIGURE 2: UVC LED WITH HEAT SINK. .. 9
FIGURE 3: SENSOR PCB WITH I2C CONNECTIONS ON THE TOP, CONVERSION CHIP PCB WITH MICRO-USB ON THE BOTTOM.11
FIGURE 4: THE SAME BANDWIDTH OUTPUT IN 3 UNITS, TAKEN FROM THE BELIEVE LOG CONSOLE. ...14
FIGURE 5: SCREENSHOT OF BELIEVE LOG CONSOLE SHOWING THE SUCCESSFUL IMPLEMENTATION OF THE DIS DLL.......................14
FIGURE 6: PERIPHERAL BLE DEVICE TRANSMITTING MICROPHONE AND IMU DATA. ...16

Practical Work at Bermondsey Electronics Ltd.

Page 5 of 20

1 Introduction
Bermondsey Electronics Ltd. was
established in 2017 by After
years of being a PCB salesperson, selling to
companies all around the United Kingdom,

 decided to start his own embedded
firmware and software company in the
heart of Bermondsey, London. ’s
company employs a small group of
incredibly talented engineers with a
wealth of experience. Potential customers reach out to Bermondsey Electronics with
projects. While I was working at the internship, these projects ranged from medical device
firmware to fitness machine software.

This report covers the layout of the company office, the structure of the company, the
facilities the company provides, and, of course, my work experience. Finally, my thoughts
on the company, what I’ve learned, and how I’ve grown as a software engineer are
discussed. Throughout the projects, I delved into software tools including but not limited
to C#, JavaScript, Python, WinForms, Visual Studio, and Visual Studio Code. Hardware
tools comprised of digital logic analysers, PCBs, dev kits, nRF BLE technology, power
supplies, digital multimeters (both desktop and handheld), and more. As an Intern
Software Developer, I thoroughly enjoyed my two and a half months at Bermondsey
Electronics over the London winter.

Figure 1: Bermondsey Electronics Ltd. logo.

Practical Work at Bermondsey Electronics Ltd.

Page 6 of 20

2 Company Information
I noticed that a large part of Bermondsey Electronics was organisation.
ensures everything, from hiring and firing to talking to potential customers, has a specific
procedure. It is clear that the procedures are all implemented for a precise reason.
explained that almost all company processes have risen from one of two things – either
by trial and error or by constantly looking for ways to improve efficiency.

2.1 Office Layout

The medium-sized office has large floor-to-ceiling windows on two of the four walls. It
was, of course, winter in London over the New Zealand summer, which meant short and
cloudy days most of the time. On occasions when the sun was shining, the windows gave
plenty of natural light during daylight hours.

Starting from the door travelling clockwise around the room, there is:

• a soldering station,
• large racks for storing customer products and various company technologies,
• ’s desk,
• my desk,
• a large storage unit of drawers containing smaller company technologies,
• ’s desk,
• a spare desk,
• smaller drawers containing relevant items from/for specific customers.

2.2 Staff Organisation Structure

The company is very small, with only three employees. The employee structure is both
rigorous and flexible. the founder and managing director of Bermondsey
Electronics, sits at the top of the ladder. , who started working at Bermondsey
Electronics only a couple of months after the company was created, is just below

 works on projects of a similar calibre to ’s.

Near the completion of my internship, and hired another employee,
. lives in Wales, so she was working entirely remotely. As she was

commencing her work at Bermondsey Electronics, she was delegated smaller tasks to
introduce her to company policies and procedures, just as I had done 2 months earlier. I
have every confidence that she will now be working at a similar level to and .

2.3 Technical Facilities and Amenities

As the Office Layout section outlines, Bermondsey Electronics has one office space. The
facilities like bathrooms, a kitchen, eateries, etc. are all located outside the office. The

Practical Work at Bermondsey Electronics Ltd.

Page 7 of 20

space inside the office is designed for maximum productivity with minimal distractions,
so the placement of the facilities external to the office is desirable.

The shared kitchen consists of a fridge where employees can store food and drinks, a
microwave, a kettle, a sink, and some dishwashing equipment. Bermondsey Electronics
supplied relevant utensils when necessary. Making coffee/tea during the day for mini
breaks was encouraged. I don’t tend to drink coffee or tea, so very kindly brought in
some hot chocolate powder specially.

On rare occasions, everyone in the office would go out for lunch. This happened twice
while I was working there. The first time was for the end-of-year Christmas lunch in
Covent Garden. The second time was my last day at the internship, and we went to
Borough Market. These were special lunches that I remember fondly. On a normal day, I
would walk 10 minutes around the corner to the centre of Bermondsey and grab lunch
from a selection of small eateries (e.g. the bakery, Turkish supermarket, or baguette cafe).
I was also known to like my Tesco Meal Deals.

For technical facilities, the office had plenty of power sockets for the plethora of
electronics that needed power. Everyone was given a large desk with a Herman Miller
office chair for maximum comfort when sitting for long periods of time. We were given a
monitor, USB hub, Windows PC, keyboard, and mouse. The keyboard was difficult to use
to begin with because it turns out the UK keyboard layout is different from the US
keyboard layout we use in New Zealand. Nevertheless, I stuck with it and can now use
either keyboard.

 was happy to purchase any hardware or software that was either necessary or that
would increase efficiency. Every Monday morning, we had a weekly meeting with all
employees where this could be brought up. Also included in the meeting was a discussion
on what everyone had been working on the previous week, some QMS (quality
management system) tasks or a code review, a discussion on any new projects from new
customers if appropriate, and deciding how much time we were going to spend on specific
projects for the week ahead.

Practical Work at Bermondsey Electronics Ltd.

Page 8 of 20

3 Work Experience
I accomplished a variety of software engineering tasks throughout the internship. I was
paid for twelve weeks of work but took one week of holiday over Christmas. I was present
at work for a total of eleven weeks. Each week was 40 hours, except for the week of the
1st of January 2024, which was 32 hours. This gave me a total of 432 hours.

 was on leave for my first two days at Bermondsey Electronics.
organised my onboarding and inductions. My first day consisted of form-filling and
reading through the company's background. This work was done remotely, as often
worked from home, and I had yet to gain personal access to the office.

For my second day at the internship, I went into the office and met there. He explained
important information specific to the office. This included the location of useful items,
health and safety briefings, and how to lock up at the end of the day if I was the last person
to leave. I was often the last person to leave the office, so this information was crucial. The
Windows PC they offered me for the duration of the internship was corrupt, so I spent the
entire day diagnosing, fixing, and eventually setting up the PC.

For the remainder of the internship, I worked on company projects for Bermondsey
Electronics or their customers. These are comprehensively outlined in the sections below.
Some projects were completed simultaneously, and some were completed with other
projects in between. A lot of the projects are for customers of Bermondsey Electronics.
For confidentiality, the customers' names will not be included. This will not interfere with
the depth at which the projects are discussed and explained.

It is important to note that Bermondsey Electronics has an in-house product called
BELIeVE (Bermondsey Electronics Limited Integration Verification Engine). This
application allows the set-up and operation of automatic tests between hardware and
software. Single-threaded scripts are written in JavaScript, and through the use of custom
DLLs, methods are called to run certain tasks on certain devices. The integration of DLLs
ensures that the possibilities of testing in BELIeVE are limitless. Although the BELIeVE
scripts are single-threaded, DLLs may be multithreaded. A DLL can be written to perform
any task with any device.

3.1 Lutron UVC Light Meter

This project was originally going to be the entire project for the internship. One of
Bermondsey Electronics’ customers is creating a handheld device in which UVC light is
emitted to treat corneal infections (infections at the eye's surface). For the internship to
go ahead, I was required to find a UVC light meter that could measure the intensity of the
UVC output from an LED. The UVC light meter had to be both accurate and accessible
through a Windows PC. The accessibility requirement is usually achieved through the
availability of public drivers. However, no such devices appeared to be actively available
on the market. The chosen Lutron UVC light meter was accurate but had no public drivers.
It did, however, have a 16-byte output stream that was continuously sent through an
RS232 serial interface. This was enough to secure the internship, thankfully.

Firstly, I needed to be able to receive communication from the device. The RS232 output
was a 16-byte data stream. To utilise BELIeVE, I used C# and the SerialPort class. I created
a simple GUI application using WinForms, which updates a text field when a new stream

Practical Work at Bermondsey Electronics Ltd.

Page 9 of 20

of data is received from the light meter. This was a good starter project to familiarise
myself with C#, Visual Studio, serial communication, and Bermondsey Electronics’ git
processes.

Once I was able to receive data from the light meter continuously, I was handed the ams
UV Sensor to work with. I didn’t have much of a chance to complete anything meaningful
with it before we realised we didn’t have any UVC LEDs to test the serial communication.
The company performing the electronics engineering for the customer had access to the
UVC LEDs, so we requested that one be sent to us. This didn’t work out, unfortunately.

Due to the unavailability of UVC LEDs to test the light meter and light sensor, this project
was put on hold, and I moved on to working on the project outlined in the BLE Output
Bandwidth section, followed by the project outlined in the Device Information Service DLL
section. After a few weeks, I returned to this project to write a DLL to interface with
BELIeVE.

The Lutron light meter continuously transmits 16-byte packets through the RS232
protocol. The light meter cannot receive data, so it is impossible to tell the light meter to
send through a data packet. There are two ways to get the most up-to-date data from the
light meter. The first is to do what was done previously – format the data transmitted from
the device every time a new packet is sent and store the result without displaying it. The
result is instant when the method to return the light meter output is called because we
just read the latest value stored. The second method is to wait for a whole data packet to
be received, format that one data packet only, and return the result. This is much more
efficient as the computer only formats the incoming data packets when necessary. It is
also much slower, however, as the whole process must be completed before the result of
the light meter output can be returned when the method is called.

I chose to implement the second method mentioned above due to the drastic efficiency
gains. Later, I would find out this was the wrong decision. I do believe implementing the
solution the way I did the first time was good practice.

The DLL included error handling to warn testers if the light meter was not in the correct
mode (it transmitted temperature sensor data if in the wrong mode on the device), if the
device was not connected (timeout), and more. Sections of the 16-byte data stream helped
identify these errors, so this wasn’t too difficult to implement.

The UVC LEDs still hadn’t shown up at this
point, so I moved on to a new project
outlined in the 128-bit UUIDs in BELIeVE
section. After another few weeks had
passed by, a UVC LED arrived, and I resumed
work on this project. The LED gets hot very
quickly when current is passed through it,
so we attached it to a heat sink with a
thermal sticker, as shown in Figure 2. The
LED was connected to a power supply. A K-
type thermocouple was pressed against the
LED backboard, close to the LED.
Connecting this to a desktop multimeter
allowed temperature measurements to be
pulled during LED operation in BELIeVE.

Figure 2: UVC LED with heat sink.

Practical Work at Bermondsey Electronics Ltd.

Page 10 of 20

The power supply can be controlled using BELIeVE, so my next task was to create a script
in BELIeVE to turn on the LED for a certain length of time, cut power to the LED if it
exceeded 50 degrees Celsius, and measure the LED output intensity using the UVC DLL I
had created. This is where the problem with timing arose. Since the JavaScript BELIeVE
scripts are single-threaded, checking the temperature of the LED had to be done at a
specified interval. There was no way to continuously check the temperature in a different
thread and create an interrupt to abort on the main thread if the temperature was
exceeded. The time it takes to check the temperature can vary, however, so it was
impossible to power the LED for an exact length of time. Unfortunately, this problem
cannot be solved entirely due to the constraints. To overcome the worst of the problem,
the average time it takes to perform one temperature check was recorded. This changes
slightly with every test run, but it was close enough to provide a rough constant.

More timing issues were also present, as I was using the second method to return the light
meter output. The efficiency was improved, but it was impossible to measure the exact
amount of time it would take to receive one 16-byte data packet, format it, and return the
result. If the light meter was in the middle of sending a data packet when the method was
called, the formatter would have to wait for the next data packet to be sent to start
formatting. This changed drastically with each re-run, so a nifty constant wouldn’t cut it.
The only solution was to refactor the entire DLL to continuously update the current
output value stored as new data packets arrived. It is important to note that while the
BELIeVE scripts must be single-threaded, the C# DLLs may be multithreaded. This change
ensured that the time between calling the method and returning the light meter output
was negligible.

The final methods in the DLL perform the following processes:

• Connect to the Lutron UVC Light Meter.
• Disconnect from the Lutron UVC Light Meter.
• Get the light meter output at that instant.
• Get the mode of the light meter at that instant (i.e. UVC or temperature).
• Set the number of digits expected from the device (default is the maximum number

of digits, so no data is lost accidentally).
• Check whether a timeout has occurred.

The next task in this project was to create a BELIeVE script to test the UVC LED intensity
in a production line. This required many assumptions, such as the device containing the
UVC LED having a custom-designed jig to hold the device and depress the trigger, and the
UVC LED being activated for the duration of the trigger depression. I used pop-up
windows in BELIeVE to inform the production line testers when to place the UVC device
in calibration mode and to warn them if the UVC LED was on for too long.

A significant part of any software project is documentation. This project was no different.
I had many comments throughout my code. and showed me how to write
proper comments in the code reviews. I was originally explaining what lines of code did.
Bermondsey Electronics wants comments that explain why you’ve implemented
something a certain way instead. I also created a readme file for the DLL repository, which
explained many nuances of the project in great depth.

Practical Work at Bermondsey Electronics Ltd.

Page 11 of 20

3.2 ams UV Sensor

This project was similar to the one outlined in the Lutron UVC Light Meter section in the
way that other projects were completed during this one. There were a few forced breaks
when certain items didn’t arrive or more pressing issues needed to be addressed.

The ams UV Sensor will be included in the customer’s UVC device to measure the intensity
of the UVC LED from within. During operation, the sensor should measure the intensity
and stop the LED immediately if the intensity is above or below a certain threshold. My
role was to create documentation for the sensor so that it will be easier for to
implement the logic later when that stage of the UVC device development begins.

Bermondsey Electronics also required a file with data from the Lutron UVC Light Meter
and the ams UV Sensor to compare the results. Every LED (UVC or not) will have a slightly
different ratio of output intensity to current, even for the same wavelength from the same
manufacturer. The calibration of the UVC LED is designed to ensure the correct amount of
current is being passed through the LED to achieve identical UVC intensities between all
UVC devices. The calibration will be conducted using the Lutron UVC Light Meter at the
factory. The device must capture that intensity using the ams UV Sensor when in the
customer's hands. This is why the comparison between the two sensors is necessary.

I wrote two BELIeVE scripts and one Python script to achieve the previously stated goal
of creating a CSV comparing the two sensors. The BELIeVE scripts were designed to test
the LED under conditions similar to how they will be calibrated in the UVC device. The
LED had power driven through it for 15 seconds at the lowest current accepted according
to the datasheet. The LED would then have a 60-second cool-down period. The current
would be increased slightly, and the cycle would continue until we reached the maximum
current according to the datasheet. This was the same for the measurements with both
the Lutron UVC Light Meter and the ams UV Sensor. The UVC DLL I had created much
earlier in the internship greatly aided the BELIeVE script with the Lutron light meter. The
ams sensor was slightly more complicated due to the unavailability of drivers for
BELIeVE.

The ams UV sensor PCB (top PCB in
Figure 3) has capabilities for
measuring the intensity of light
across the entire ultraviolet (UV)
spectrum. This includes UVA, UVB,
and UVC. The PCB also has a
temperature sensor. A second PCB
with a conversion chip (bottom PCB
in Figure 3) is provided to connect
the sensor PCB to a Windows PC. A
ribbon cable attaches the two PCBs,
and a Micro-USB port is supplied.
This is great for experimenting with
the sensor but not for utilising its
capabilities from within the UVC
device. The PCB with the sensors
receives and transmits data through

Figure 3: Sensor PCB with I2C connections on the top, conversion chip
PCB with Micro-USB on the bottom.

Practical Work at Bermondsey Electronics Ltd.

Page 12 of 20

the I2C protocol, so I recorded all packet transmissions using a DSLogic Plus logic analyser
and the DSView desktop application.

The ams sensor came with a desktop application called EvalSW to extract and display the
data from the UVA, UVB, and UVC sensors, as well as the onboard temperature sensor. This
is transmitted through the Micro-USB connection on the second PCB described earlier. By
starting data collection in DSView, starting the measurement in EvalSW, and starting the
ams script in BELIeVE, DSView will record all the data the ams sensor receives from
EvalSW for set-up, and all the data it transmits to EvalSW from detecting the UVC light
from the LED managed by BELIeVE. The BELIeVE script generates a CSV file with the data,
and DSView generates a CSV file with the ams sensor data packets.

The Python script was my final flourish at the internship (along with 20 pages of
documentation to support it). I made sure it was packed with useful features to help
later. The script takes in three CSV files. The first CSV file is the data from BELIeVE. The
second CSV file is the data packets output from DSView. The third CSV file is a conversions
table taken from the datasheet of the ams UV Sensor. It is possible to provide each file in
the console during runtime or specify the paths beforehand for ease of use/repeatability.

The script starts by extracting the operations from the DSView output CSV file. The file is
messy, and this section creates an intermediary CSV file with the data formatted nicely.
Every byte that is received starts on a new line, so the script then collects the data into
another intermediary CSV file where each line is one full data packet. We can then scan
through each line in the latest CSV file and find when the intensity value is the greatest in
each cycle of the LED being turned on. The script also extracts the set-up data packets to
display the current measurement mode, clock frequency, integration time, etc., so can
use the same set-up parameters further down the track.

When the script finds the greatest intensity value stored in the register for each cycle, it
uses the conversions CSV file mentioned previously to convert the raw value into an actual
light intensity with a unit of 𝑚𝑊/𝑐𝑚2, the same as the Lutron UVC Light Meter. This line
is added to the final output CSV of the Python script. The default behaviour is to then
delete the intermediary CSV files permanently, but this can be changed very easily by
commenting one line out within the script.

The script and the method to repeat this experiment were documented extremely
thoroughly for Bermondsey Electronics. The 20-page document explains the equipment
used, the Lutron UVC Light Meter test, the ams UV Sensor test, how to combine their
results, and what the results may signify. Documentation is so important, and I am glad I
will help in the future by having documented everything so thoroughly.

3.3 BLE Output Bandwidth

When the Lutron UVC Light Meter project and the ams UV Sensor project were put on hold,
I started work obtaining the output bandwidth of certain characteristics broadcast by BLE
devices. Firstly, I had to understand how BLE actually works. I spent a whole morning
researching and completing mini quizzes online to gain an understanding of BLE.

BLE, or Bluetooth Low Energy, is a wireless communication protocol designed by
Bluetooth SIG Inc. to transmit and receive small amounts of data between two devices
with very little power usage. This is specifically designed to target devices where the
preservation of battery life is critical. I had to learn new terminology as well. For example,

Practical Work at Bermondsey Electronics Ltd.

Page 13 of 20

a characteristic stores the value of a certain property that will be transmitted through
BLE, and a service is a collection of characteristics. Each service and characteristic follows
the Attribute Protocol (ATT) format with a representative UUID. A list of all the assigned
service UUIDs can be found here, and a list of all the assigned characteristic UUIDs can be
found here.

The device I was working with was a rower machine. This has all sorts of services and
characteristics. For example, it has a Fitness Machine service (UUID: 0x1826) with a
Rower Data characteristic (UUID: 0x2AD1) and a Supported Resistance Level Range
characteristic (UUID: 0x2AD6), among others. The Windows PC is the central device
scanning for and receiving from the peripheral device. The rower machine is the
peripheral device transmitting data to the central device.

The property of the characteristic defines the method in which the data transfer will
occur. There are multiple ways in which a central device can read data from a peripheral
device, but the most common are ‘Notify’ and ‘Read’. The Rower Data characteristic
contains the data for the current power, distance, time since exercise started, etc. and this
is, of course, continuously updating. The property of the characteristic is set to ‘Notify’ so
that the peripheral device notifies the central device when an update is sent over the air.
This is the first method. The Supported Resistance Level Range characteristic contains
one value set for that machine and does not change. The central device, therefore, does
not need to know when this value changes because it will not change. The property of the
characteristic is set to ‘Read’ so that the central device can fetch the value stored in the
characteristic efficiently. This is the second method.

The bandwidth of a BLE characteristic only makes sense when the property is set to
‘Notify’, or the first way described above. This knowledge is what I needed to focus on
calculating how many bits the central device received from the peripheral device, in how
much time. This gives a unit of bits per second, also known as bandwidth. I created a script
in BELIeVE to perform this calculation. The data from the rower machine comes through
as a string of bytes. Every two characters is one byte (i.e. 0xFF is one byte). The time from
when receiving notifications is started to when it is stopped is measured in milliseconds.

We can use dimensional analysis to work out the conversion equation to get bits per
second from bytes per millisecond:

𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
=

𝑏𝑦𝑡𝑒𝑠

𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑
∗ 8

𝑏𝑖𝑡𝑠

𝑏𝑦𝑡𝑒
∗ 1000

𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑠𝑒𝑐𝑜𝑛𝑑

This successfully reads the bandwidth from a notification characteristic. When working
with 128-bit UUIDs, as outlined in the 128-bit UUIDs in BELIeVE section, calculating the
bandwidth was important. The bandwidth from this 128-bit characteristic was much
greater than the fitness machine characteristic calculated previously. This required the
units of bytes per second. This was an even simpler calculation:

𝑏𝑦𝑡𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
=

𝑏𝑦𝑡𝑒𝑠

𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑
∗ 1000

𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑠𝑒𝑐𝑜𝑛𝑑

https://bitbucket.org/bluetooth-SIG/public/src/main/assigned_numbers/uuids/service_uuids.yaml
https://bitbucket.org/bluetooth-SIG/public/src/main/assigned_numbers/uuids/characteristic_uuids.yaml

Practical Work at Bermondsey Electronics Ltd.

Page 14 of 20

With these scripts ready in BELIeVE,
this project was completed. The output
in BELIeVE is shown in Figure 4. It was
useful to include kilobytes per second
due to the large number. 𝐾𝐵/𝑠 is also a
very common unit for bandwidth.

3.4 Device Information Service DLL

As discussed in the BLE Output Bandwidth section, services and characteristics form the
underlying structure of BLE transmissions. This project was to create a DLL allowing a
developer to write a script in BELIeVE to call methods that retrieve the characteristics
within the Device Information service (UUID: 0x180A). The characteristics are:

• Manufacturer Name String (UUID: 0x2A29)
• Model Number String (UUID: 0x2A24)
• Serial Number String (UUID: 0x2A25)
• Hardware Revision String (UUID: 0x2A27)
• Firmware Revision String (UUID: 0x2A26)
• Software Revision String (UUID: 0x2A28)
• System ID (UUID: 0x2A23)
• IEEE 11073-20601 Regulatory Certification

Data List (UUID: 0x2A2A)
• PnP ID (UUID: 0x2A50)

This project was a time-filler while waiting for a UVC
LED to arrive. This basic grunt work was handy for the
company but not terribly difficult. It had an underlying
significance, however, allowing me to explore the fundamentals of Bluetooth wireless
communication. The formation and implementation of DLLs in BELIeVE was also a
significant learning objective achieved through this project. Figure 5 shows that the value
stored in each characteristic is what we expect (i.e. what was set on the peripheral BLE
device).

3.5 128-bit UUIDs in BELIeVE

BELIeVE has many features due to the ever-evolving DLLs that can be passed into it. As
new features are needed, DLLs can be created or extended to cater to these requirements.
The feature set initially included the ability to read characteristics with a 16-bit UUID.
This was useful for the rower machine because the services and characteristics were
standard across numerous rower machines. Another one of Bermondsey Electronics’
customers was using a device that did not have standard services and characteristics. This
called for the implementation of 128-bit UUIDs.

As stated in the BLE Output Bandwidth section, Bluetooth LE uses UUIDs to access
services and characteristics. The standard UUID is 16 bits, but Bluetooth SIG Inc. must
define these beforehand. These are expensive to purchase. The more common approach
to defining custom services and characteristics is to use 128-bit UUIDs. These can be
generated using an online tool such as uuidgenerator.net. The problem arises when

Figure 4: The same bandwidth output in 3 units, taken from the
BELIeVE log console.

Figure 5: Screenshot of BELIeVE log console
showing the successful implementation of
the DIS DLL.

https://www.uuidgenerator.net/version4

Practical Work at Bermondsey Electronics Ltd.

Page 15 of 20

attempting to read from a characteristic with a 128-bit UUID in BELIeVE. Including this
functionality within BELIeVE was desirable so that customers’ custom services and
characteristics can be automatically tested.

The BLE DLL uses the pc-ble-driver-py Python library to interface with an nRF53 dongle from
Nordic Semiconductors. This allows the Windows PC to be a central BLE device. When
BELIeVE is installed, a certain version of pc-ble-driver-py is installed from the online
repository. Unfortunately, three of the included methods limit a certain feature that we
require. To solve this issue, I patched these methods. The program uses the patched
versions by overwriting those specific methods whenever they are called. This was well
documented for future developers.

To extend the capabilities of the library, I needed to edit the wrapper (for us denoted as
‘driver.py’). The first problem was that the UUIDs were integers. This worked well for 16-
bit UUIDs, because integers can store up to 64 bits. This would not work for 128-bit
UUIDs, however. I, therefore, had to convert all UUIDs to strings. The 16-bit UUIDs could
be given as integers or strings to ensure backwards compatibility. The 128-bit UUIDs had
to be given as type string . Python is rather ambiguous when object types are of importance,
so I was forced to write new methods to handle the string UUIDs.

Error handling was another problem. There is a wrapper which handles the errors
automatically, but this was only the case for the first call to a method in pc-ble-driver-py . Any
subsequent calls to methods in the library would be ignored, as either SUCCESS or an error
had been returned. To combat this, error handling was achieved within each new
driver.py method itself. I also added new debugging tools for developers to make future
improvements easier to implement.

Sometimes, customers want added security in their products to reduce the chances of
being ‘hacked’. This was a requirement for the device with 128-bit UUIDs for custom
characteristics. After gaining a much deeper understanding of certain BLE processes, I
implemented the function of connecting to a peripheral device with authentication. The
device had the simplest form of authentication available to BLE devices, so there was no
bonding, no Man in the Middle protection, no LE Secure Connection pairing, no Out of
Bound data, and no keypress notifications. These options would be easy enough to change
on our end, as these are just Boolean values. The library does the rest. The authentication
process was a difficult challenge to overcome, so I was pleased when the Windows PC
successfully connected to the peripheral device.

The most difficult part of the project was understanding how pc-ble-driver-py recognises
128-bit UUIDs. Generally, a different UUID would signify a different characteristic. In this
library, however, this is not always the case. Every UUID has a base UUID. Please note that
the following explanation will require me to swap between bits and bytes. A reminder
that 128 𝑏𝑖𝑡𝑠 = 16 𝑏𝑦𝑡𝑒𝑠 and 16 𝑏𝑖𝑡𝑠 = 2 𝑏𝑦𝑡𝑒𝑠. The base UUID is the entire 16-
byte/128-bit UUID, with the exception of bytes 2 and 3. The 16-byte/128-bit UUID
6258xxxx-231C-4311-A51B-C7EFCBF1BF6D is an example of a base UUID, where xxxx denotes bytes
2 and 3. We are left with a 2-byte/16-bit ID (bytes 2 and 3, i.e. xxxx) to retrieve custom
characteristics. This is great because we are now treating our custom services and
characteristics like standard ones from Bluetooth. There is virtually no documentation on
this subject from the developers of pc-ble-driver-py , so this was incredibly difficult to figure

out.

Practical Work at Bermondsey Electronics Ltd.

Page 16 of 20

Before I figured out this crucial information, Bermondsey Electronics was incrementing
the last digit of the 128-bit UUID (i.e. the D), rather than the last digit in the first group of
8 digits in the 128-bit UUID (i.e. the last x). For every test script in BELIeVE, only one base
UUID is permitted, and if multiple base UUIDs are provided, it will only use the first one.
Although not our intention, we were effectively changing the base UUID for every
characteristic but leaving the 16-bit ID the same. Therefore, the library was fetching the
same characteristic every time, even though the 128-bit UUID was changing.

Thankfully, I realised this mistake in the format of our custom 128-bit UUIDs during the
internship. The code in driver.py was rectified to split a 128-bit UUID into a base UUID
and a 16-bit ID. Using these two values, pc-ble-driver-py successfully retrieved data from two
different custom characteristics in the same test script. The only catch was that the UUIDs
must follow the rules set out above (i.e., have the same base UUID).

Documentation, again, played a significant role in this project. I fashioned a readme file
containing all the information for Bermondsey Electronics to set up and use custom
UUIDs in BELIeVE in the future. In-line comments, header comments, XML
documentation comments (C#), and Docstrings (Python) were all extensively included
within the code base. This will aid the company in maintenance and development.

This was an exceptionally demanding but satisfying project to complete successfully.
Figure 6 shows the peripheral BLE device dev kit from which the Windows PC received
data. The two custom characteristics were analogue microphones and an inertial
measurement unit (IMU).

Through BELIeVE, I could then create a test script to extract the microphone and IMU
data. The data are then exported to a CSV file primed for analysis. This is very useful for

, who needed to automatically test the data from the microphone and IMU are credible
and reliable.

Figure 6: Peripheral BLE device transmitting microphone and IMU data.

Practical Work at Bermondsey Electronics Ltd.

Page 17 of 20

3.6 RFID Stick Scanner for Farm Animals

A couple of weeks before the end of my internship, Bermondsey Electronics received a
new customer. The job was to develop the firmware for a device that scans RFID tags
attached to farm animals for tracking. Since this was near the end of the internship, my
role was not programming. Instead, I was tasked with creating the Integration Test Plan.
This is a crucial document that lists all expected outcomes to the customer from
Bermondsey Electronics so no misunderstandings of requirements can arise.

The necessity of this document was made clear, as the company processes state that this
is the one document which may save the company in case of a lawsuit for not completing
what was initially discussed between Bermondsey Electronics and their customer. I
aimed to be as detailed and thorough as possible so as to uphold the criticality of this
document.

Firstly, I created an outline for the Integration Test Plan. This was a basic skeleton
structure of the document to ensure I was heading in the right direction. After receiving
feedback from , I proceeded to write the draft. This version was discussed with the
customer for feedback, and I made the necessary additions and changes. The final version
had 11 tests, each with sub-tests. Once every test achieves 100%, Bermondsey Electronics
has finished its job with this customer.

 was using this document to design the product firmware as my internship was
coming to an end. The Integration Test Plan helped ensure that the customer requires
every component developed and that every component developed functions correctly.

Practical Work at Bermondsey Electronics Ltd.

Page 18 of 20

4 Reflective Appraisal
4.1 Impressions of Bermondsey Electronics Ltd.

Bermondsey Electronics was a well-organised company, successfully completing many
customer projects all year round. The small nature of the company is why customers
choose to develop their products with Bermondsey Electronics, so growing the company
is not the main goal. The goal is instead to make customers happier with the software
solutions. A large portion of this can be accomplished through automatic testing, so the
company has invested a lot of time and money into purchasing, using, and developing
technologies to this effect.

The largest product the company has developed for itself (i.e. not for a customer) is the
Bermondsey Electronics Limited Integration Verification Engine, or BELIeVE. This
product allows Bermondsey Electronics to generate revenue without relying solely on
selling their time-based services. BELIeVE is a very powerful tool, so I was working with
this to complete many of my internship projects. Customers can be assured that the
software products they are paying for have been thoroughly tested, making Bermondsey
Electronics more reliable as a company.

It is also clear, however, that sometimes takes on more than he and can handle.
This is evident in both 's and ’s stress levels. Of course, I was able to help with
this during my internship. The decision to hire near the end of my internship likely
arose from the realisation that more work needed to be done in less time, and my
departure from the company wouldn’t support that effort.

Overall, Bermondsey Electronics Ltd. is a high-functioning company that completes the
work for its customers efficiently and effectively. A great productivity-focused company
culture ensures customers are kept up-to-date during development and satisfied at
project completion.

4.2 My Growth as a Software Engineer

Working with everyone in the company was an immensely fulfilling experience. As
mentioned previously, Bermondsey Electronics is a very small company. Having only

 and for most of my time there, I learned a lot of specific knowledge from both.
There were many tools I used throughout the internship that were completely new to me.
Completing this internship after Part II and before Part III meant that significant software
topics like databases, operating systems, machine learning, and networking had not been
covered yet.

Serial communication was a large part of the internship. I had not previously explored
this branch of software and electronics in detail, so there was a steep learning curve. Using
RS232 and I2C communication protocols during the internship will greatly aid my future
professional career, as understanding these technologies is very useful in a software
engineering context.

Bluetooth Low Energy was also new to me. Understanding the fundamental principles of
wireless communication is a significant objective. Hours of self-research led to the BLE
project’s successful completion. This skill will absolutely come in handy in the future as
devices move closer and closer to purely relying on wireless communication technology.

Practical Work at Bermondsey Electronics Ltd.

Page 19 of 20

One course that I did take in Part II was Software Quality Assurance. This included the
theory and practice of testing software. Arguably, the largest component of the internship
was testing. My previous knowledge was handy as a base-level foundation that could be
built on top of during my time at Bermondsey Electronics. I delved much deeper into
automated testing with both software and hardware. The large majority of automated
testing was completed with BELIeVE due to its exceptionally flexible interface. I found
creating drivers for certain hardware products to access them through BELIeVE to be
particularly rewarding.

Of course, I acquired many other skills during the internship. The importance of
teamwork and delegation were among some of the lessons I learned. As engineering
students at the University of Auckland, we are taught to work in teams to a high level. In
the workplace, this is brought to an even higher level. Everyone is responsible for certain
parts of a project, and letting down the team is not taken lightly. The reputation of the
company rides on everyone in the team, and this includes interns. If someone is struggling
to understand or implement a certain element, this should be brought up in a meeting as
soon as possible. Customers usually have strict time schedules, so it is crucial to ensure
the output is what they expect, when they expect. This necessity is vastly different to the
individual grades that teamwork influences within the context of university courses.

From this internship experience, I feel to have gained an immense wealth of knowledge.
It has helped me to grow as a software engineer and as an individual. I could not expect
anything more from an internship, so this was an exceedingly successful few months in
London with Bermondsey Electronics.

Practical Work at Bermondsey Electronics Ltd.

Page 20 of 20

5 Conclusions
Interning at Bermondsey Electronics Ltd. was an immensely fulfilling experience. I am
very lucky to have had this opportunity, not only for the amazing internship experience
but also for the ability to undertake the internship in London. London is an amazing city,
and I had such a blast working, hanging out with family and new people, and, of course,
exploring many of the city’s tourist attractions.

The internship itself could have been only one project. I could have only been working on
internal processes for the company and never touched a project for a customer. and

could have never explained unfamiliar concepts to me. I am extremely fortunate that
none of these occurred. I was able to learn so many software engineering skills that will
directly or indirectly affect my future university studies, internships, and graduate roles.

Working with , and eventually , was thoroughly enjoyable. Although
worked from home a lot of the time and I was never able to meet in person, they
were always only a Teams message or call away. was fantastic at showing me how
to set up and use certain equipment, explain difficult concepts to me, and uphold
maximum productivity during working hours. All the employees are very highly educated
and talented embedded software engineers, so it was a treat to discuss important
software engineering topics with them in great depth.

Social events were great fun, with lunches, walks, and Friday evening drinks around
London. Due to customer demands for strict schedules, social conversations were kept to
a minimum during working hours. This is different from university, where there are
always people to talk with in between lectures. I found it to be great for productivity. I
achieved more at the internship during the day than I do at university some days, solely
due to the absence of constant distractions. Fortunately, I enjoy being productive, so only
having the occasional social event was a good fit for me.

Overall, Bermondsey Electronics Ltd. was an amazing place to work. The small nature of
the company interweaved with the demanding projects undertaken, allowed me to
expand my software engineering horizon further than I could have imagined. The two and
a half months in London were some of the best two and half months of my life, and I
couldn’t ask for anything more.

	This exemplar report was submitted by a student and is not reflective of the official views of the University of Auckland
	June 2024 Software Engineering - Practical Work Exemplar
	Software 853889456 rubric
	Bermondsey_Electronics_Practical_Work_Report_-_cdea354 (1)
	Summary
	Acknowledgements
	Table of Contents
	Table of Figures
	1 Introduction
	2 Company Information
	2.1 Office Layout
	2.2 Staff Organisation Structure
	2.3 Technical Facilities and Amenities

	3 Work Experience
	3.1 Lutron UVC Light Meter
	3.2 ams UV Sensor
	3.3 BLE Output Bandwidth
	3.4 Device Information Service DLL
	3.5 128-bit UUIDs in BELIeVE
	3.6 RFID Stick Scanner for Farm Animals

	4 Reflective Appraisal
	4.1 Impressions of Bermondsey Electronics Ltd.
	4.2 My Growth as a Software Engineer

	5 Conclusions

